Ir al contenido principal

1856 ALMANAQUE MUNDIAL Lobachevsky

Nikolay Lobachevsky

El 24 de febrero de 1856 muere Nikolay Lobachevsky, matemático y fundador de la geometría no euclidiana


El 24 de febrero de 1856 murió Nikolay Ivanovich Lobachevsky, en Kazán. Nacido el 20 de noviembre de 1792, en Nizhny Novgorod, Rusia, fue un matemático y fundador de la geometría no euclidiana, que desarrolló independientemente de János Bolyai y Carl Gauss. (La primera publicación de Lobachevsky sobre este tema fue en 1829, la de Bolyai en 1832; Gauss nunca publicó sus ideas sobre geometría no euclidiana).
Creció en una familia de recursos moderados. Sin embargo, las relaciones familiares eran tensas. Después de 1791, su madre se divorció de su marido, Iván Lobachevsky. El análisis moderno de materiales de archivo previamente desconocidos muestra que su padre era muy probablemente Sergey Shebarshin (muerto en 1797), un graduado de la Universidad Estatal de Moscú que trabajó como topógrafo y ascendió al rango de consejero titular. Después de la muerte de Shebarshin, la economía de la familia empeoró. Desde 1802 Lobachevsky vivió en Kazán, donde estudió con una beca del gobierno en el Gymnasium y después de 1807 en la Universidad Estatal de Kazán, inaugurada en el mismo edificio por el zar Alejandro I en 1804.
Sus profesores eran alemanes invitados a la universidad, en particular el matemático Martin Bartels, amigo de Gauss conocido por su conocimiento enciclopédico de las matemáticas. En 1812 Lobachevsky obtuvo una maestría en la universidad. En 1814 recibió el título de adjunto en matemáticas puras y permiso para enseñar de forma independiente. Impartió cursos de teoría de números, aritmética, álgebra, trigonometría, cálculo integral y diferencial, geometría plana y esférica, mecánica, física y astronomía.
Desde 1816 fue profesor extraordinario. En 1819, la junta regional de educación de Kazán instituyó una política xenófoba y los profesores alemanes se marcharon. La resultante escasez de profesores condujo a un rápido avance en la carrera de Lobachevsky; en 1820 fue nombrado decano de la facultad de físico-matemática y en 1822 se convirtió en profesor ordinario y jefe del comité de biblioteca. Tras un cambio en la junta regional de educación en 1827, se convirtió en rector de la universidad. Lobachevsky fue elegido para este puesto no remunerado seis veces consecutivas, ocupándolo durante 19 años.
Fomentó por todos los medios la difusión de la educación en el extenso distrito de Kazán. Contribuyó decisivamente a detener la propagación de una virulenta epidemia de cólera, entre 1830 y 1831 entre los profesores y estudiantes de la universidad mediante una estricta cuarentena, y mediante una audaz acción personal salvó a la universidad de un devastador incendio que arrasó Kazán en 1842.
En 1846 renunció al cargo de rector y fue nombrado administrador adjunto de la junta regional de educación. En años posteriores quedó ciego, enfermó gravemente y perdió a su amado hijo, pero continuó su labor académica y dictó su última obra, “Pangéométrie”, en francés en 1855.
La pseudoesfera


La pseudoesfera tiene una curvatura negativa constante; es decir, mantiene una concavidad constante en toda su superficie. La pseudoesfera, que no se puede mostrar en su totalidad en una ilustración, se estrecha hasta el infinito en ambas direcciones alejándose del disco central. Fue uno de los primeros modelos de un espacio no euclidiano.
En febrero de 1826 presentó a la facultad de físico-matemática el manuscrito de un ensayo dedicado al "análisis riguroso del teorema de las paralelas", en el que podría haber propuesto una prueba del quinto postulado de Euclides sobre rectas paralelas o una primera versión de su geometría no euclidiana. Este manuscrito, sin embargo, no fue publicado ni discutido públicamente por la universidad, y su contenido sigue siendo desconocido.
Hizo la primera exposición pública de las ideas de la geometría no euclidiana en su artículo "Sobre los principios de la geometría", que contenía fragmentos del manuscrito de 1826 y se publicó entre 1829 y 1830 en una revista menor de Kazán. En su geometría, abandonó el postulado de las paralelas de Euclides, que afirma que en el plano formado por una recta y un punto que no está en la recta es posible trazar exactamente una recta por el punto que es paralela a la recta original. En cambio, basó su geometría en la siguiente suposición: en el plano formado por una línea y un punto que no está en la línea, es posible dibujar infinitas líneas a través del punto que sean paralelas a la línea original. Más tarde se demostró que su geometría era consistente y, como resultado, que el postulado de las paralelas es independiente de los demás axiomas de Euclides y, por tanto, no derivable como teorema a partir de ellos. Esto finalmente resolvió una cuestión que había ocupado las mentes de los matemáticos durante más de 2.000 años; no puede haber un teorema paralelo, sólo un postulado paralelo. Lobachevsky llamó a su obra “geometría imaginaria”, pero, como simpatizante del espíritu empírico de Francis Bacon, intentó determinar la “verdadera” geometría del espacio analizando datos astronómicos obtenidos al medir el paralaje de las estrellas.
El matemático italiano Eugenio Beltrami descubrió una interpretación física de la geometría de Lobachevsky sobre una superficie de curvatura negativa, pero recién en 1868.
De 1835 a 1838 publicó "Geometría imaginaria", "Nuevos fundamentos de la geometría con la teoría completa de las paralelas" y "Aplicación de la geometría a ciertas integrales". En 1842, su trabajo fue notado y muy elogiado por Gauss, a cuya instigación Lobachevsky fue elegido ese año como miembro correspondiente de la Real Sociedad de Göttingen.
Aunque Lobachevsky también fue elegido miembro honorario de la facultad de la Universidad Estatal de Moscú, sus innovadoras ideas geométricas provocaron malentendidos e incluso desprecio. El famoso matemático ruso de la época, Mikhail Ostrogradskii, miembro de la Academia de San Petersburgo, así como el académico Nicolaus Fuss, hablaron despectivamente de sus ideas. Incluso una revista literaria logró acusarlo de “abstruso”. Sin embargo, Lobachevsky continuó obstinadamente desarrollando sus ideas, aunque de forma aislada, ya que no mantenía vínculos estrechos con sus colegas matemáticos.
Además de su geometría, obtuvo resultados interesantes en álgebra y análisis, como el método de Lobachevsky-Gräffe para calcular las raíces de un polinomio y el criterio de Lobachevsky para la convergencia de una serie infinita. Sus intereses de investigación también incluyeron la teoría de la probabilidad, el cálculo integral, la mecánica, la astronomía y la meteorología.
El significado real de la geometría de Lobachevsky no fue comprendido y apreciado completamente hasta el trabajo del gran matemático alemán Bernhard Riemann sobre los fundamentos de la geometría, en 1868 y la prueba de la consistencia de la geometría no euclidiana por su compatriota Felix Klein en 1871.
A finales del siglo XIX, la Universidad Estatal de Kazán estableció un premio y una medalla en nombre de Lobachevsky. A partir de 1927, el Premio Lobachevsky fue otorgado por la Academia de Ciencias de la Unión Soviética (ahora Academia de Ciencias de Rusia), pero en 1992 la concesión de la medalla recayó en la Universidad Estatal de Kazán.
©Juan Manuel Aragón

Comentarios

Entradas populares (últimos siete días)

VIALIDAD Mal estado de la ruta del Bobadal a Las Delicias

Una ruta que Vialidad no repara Los vecinos reclaman por un camino que requiere mantenimiento y que fue abandonado hace varios años La ruta provincial 204, en el segmento comprendido entre El Bobadal y Las Delicias, presenta un marcado deterioro que la vuelve cada día más difícil de transitar. El avance del monte sobre la calzada, la presencia de baches profundos y los sectores erosionados por las lluvias convierten el recorrido en un riesgo permanente. Habitantes de distintos lugares que dependen de este camino para su vida cotidiana advierten que circular por allí, sin importar el tipo de vehículo, se ha transformado en una verdadera aventura. En días de precipitaciones intensas, incluso, existe la posibilidad concreta de quedar varado e imposibilitado de avanzar. Según relatan los vecinos, las últimas tareas de mantenimiento se realizaron hace varios años, cuando se enripió ese trayecto. Desde entonces, la intervención de la motoniveladora de Vialidad Provincial ha sido esporádica, ...

DESPEDIDA Carlos Bothamley

Carlos Bothamley Se ha ido el comerciante, el visitador médico, el amigo: su sonrisa, sus anécdotas y su bonohomía vivirán siempre Al último, cuando los años lo andaban por alcanzar, Carlos Bothamley se decidió y escribió su primer libro. Serían memorias, como es lógico, mezcladas con la vida misma. Había nacido el 12 de diciembre de 1940, en otra ciudad en el mismo lugar geográfico que la actual, pero que ya no era esta, sino distinta. Murió la noche del 3 al 4 de febrero, con 85 años bien vividos. Fue autor de una especie de crónicas, cuentos, sucedidos y chistes que sabía de siempre. Su primer libro fue “Pensamientos dispersos”, presentado por Martín Bunge en el Centro Cultural del Bicentenario. El segundo, “Humor y nostalgia”, no fue presentado porque durante la pandemia no estaban permitidas las reuniones. El tercero, “Pretérito santiagueño”, fue presentado por Alfonso Nassif en la casa Argañaraz Alcorta, en el 2022. Este último fue declarado de interés provincial, cultural y educ...

PLATA El rico es el otro

Riqueza No espere en esta nota un discurso moral, sólo se le pide que diga con qué gesto concreto sabría que ha llegado a la opulencia Casi nadie se siente rico. Monetariamente hablando, claro. Es más: sentirse rico es una rareza. Uno suele ubicarse a sí mismo en la mitad de la tabla, o de la mitad para abajo. O directamente abajo. El rico es el otro. Quien lee estas líneas, desde ya, es una persona espiritual. Cree que la verdadera riqueza es la que anida en el corazón, que lo material se gasta, que nadie se lleva nada al otro mundo y coso. Pero esta nota trata de plata. Del vil metal. De la biyuya. Y de una pregunta bastante simple: ¿qué debería tener usted para sentirse rico? Dicho de otro modo: ¿qué signos exteriores en su vida le darían la certeza íntima, definitiva, de haber llegado? No se trata de cifras ni de balances, sino de señales. Hay amigos, por ejemplo, que dicen que el día que tengan chofer particular sabrán que son ricos. Decirle a uno: “Mañana pasá por casa a las siet...

MIRADAS Sexo explícito

Mirada En un análisis fino, un viejo dicho español cobra sentido cuando se lo cruza con las ideas que subyacen en el texto Un amigo envía un dicho que circula en su familia desde hace siglos: “No me mires, porque nos miran los que nos miran que nos miramos. los que nos miran Cuando no nos miren, que nos miramos, entonces sí, nos miraremos”. Es un poema español. Y un rato largo que dura varios días largos, paso pensando en esas miradas que van y vienen, en lo que sucede con el asombro, la curiosidad de los demás cuando ven qué hago. No me mires. No ahora. No porque no quiera, sino porque nos miran. Pero ellos siempre miran: son los atentos, los entrometidos, los que no tienen nada mejor que hacer que vigilar gestos ajenos. Nos miran. Peor todavía, se dan cuenta de que nos miramos. Ahí empieza el problema. Una cosa es mirar y otra muy distinta es ser visto mirando. El mirar, cuando es verdadero, casi nunca tolera testigos. Necesita descuido, distracción, una esquina de tiempo en la que n...

MATEO La limosna y el agradecimiento

Acto juarista En el pasado se hacían actos para besar las manos a quienes no se habían desprendido de nada propio “Cuando hagas limosna, que no sepa tu mano izquierda lo que hace tu derecha, para que tu limosna quede en secreto; y tu Padre, que ve en lo secreto, te recompensará”, recuerda San Mateo en su evangelio. Cualquiera con un mínimo de decencia queda anonadado cuando alguien obliga a otro a darle las gracias por un favor que le acaba de hacer. Para peor, muchas veces no es ni siquiera un favor personal. El que hace la gestión para que un vecino reciba un par de anteojos, una silla de ruedas, muchas veces obliga al favorecido a agradecerle en público, con lo que su acto pierde todo valor. A veces hasta organiza una  ceremonia para exigirle ser reconocido como quien lo benefició. Es lo mismo que, se dice, hacían los monarcas en los regímenes antiguos: revestirse de una innecesaria autoridad para entregar lo que no salió ni siquiera de sus propios bolsillos. Los ditirambos que ...